This article was downloaded by: On: 28 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: <http://www.informaworld.com/smpp/title~content=t713646857>

Thermodynamic activation parameters for viscous flow of dilute aqueous solutions of ethylenediamine, trimethylenediamine and N,Ndimethyltrimethylenediamine

S. M. Islam^{ab}; M. A. Saleh^a

^a Department of Chemistry, University of Chittagong, Chittagong, Bangladesh ^b Department of Chemistry, Memorial University, St. John's, Canada

First published on: 26 January 2010

To cite this Article Islam, S. M. and Saleh, M. A.(2010) 'Thermodynamic activation parameters for viscous flow of dilute aqueous solutions of ethylenediamine, trimethylenediamine and N,N-dimethyltrimethylenediamine', Physics and Chemistry of Liquids, 48: 2, 156 — 170, First published on: 26 January 2010 (iFirst)

To link to this Article: DOI: 10.1080/00319100802654347 URL: <http://dx.doi.org/10.1080/00319100802654347>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Thermodynamic activation parameters for viscous flow of dilute aqueous solutions of ethylenediamine, trimethylenediamine and N,N-dimethyltrimethylenediamine

S.M. Islam^{ab*} and M.A. Saleh^a

^aDepartment of Chemistry, University of Chittagong, Chittagong, Bangladesh; ^bDepartment of Chemistry, Memorial University, St. John's, Canada

(Received 8 October 2007; final version received 30 November 2008)

The density and the viscosity data have been used to determine the thermodynamic activation parameters, free energies (ΔG^{\ddag}), enthalpies (ΔH^{\ddag}) and entropies (ΔS^{\ddagger}), for viscous flow of the systems; water (W) + ethylenediamine (ED), W + trimethylenediamine (TMD) and $W + N,N$ -dimethyltrimethylenediamine (DMTMD) in the temperature range of 303.15–323.15 K over the composition range of $0 \le X_2 \le 0.45$, where X_2 is the mole fraction of diamines. On addition of diamines to water, ΔG^{\ddagger} , ΔH^{\ddagger} and ΔS^{\ddagger} values increase sharply, pass through a maximum and then decline. The heights of maximum in the $\Delta \tilde{G}^{\ddagger}$ *versus X*₂ curve vary as, $W + DM \times W + TMD > W + ED$. For all systems, the excess properties, $\Delta G^{\ddagger E}$, $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ are positive. The observed increase in thermodynamic values may be due to combined effect of hydrophobic hydration of diamines and water–diamine interaction as a result of hydrophilic effect.

Keywords: excess thermodynamic properties; density; viscosity; aqueous diamines; hydrophobic hydration; hydrophilic effect

1. Introduction

Thermodynamic and transport properties of binary liquid mixtures help in understanding the nature of molecular interactions taking place in solutions. These data are also very useful in chemical or process industries and to develop new theoretical models. Aqueous solutions of hydrophobic solutes are one of the particular areas of interest. Advancement in experimental techniques as well as theoretical methods has provided a better insight into the structural aspect of water around hydrophobic solutes [1–15]. The structure and the interaction for small spherical type solutes whose sizes are comparable with the water molecule have been studied extensively [7–10]. The feature of the water structure is described as the so-called clathrate-like geometry. Very large spheres or planar walls have also been investigated in detail to mimic extended hydrophobic surfaces [11–14]. The structures and the interactions in these two extreme cases have been found to be quite different. Kinoshita [15] studied the structure of water around hydrophobic solutes of varying size and concluded that the structure exhibits drastic change with the solute size.

There are a limited number of studies on the thermodynamics of aqueous solutions of hydrophobic solutes. This prompted us to undertake the present studies with the hope

^{*}Corresponding author. Email: shahidul321@yahoo.com

of collecting new data hitherto not known. Moreover, we wished to see how the thermodynamic properties are influenced by the structural differences of the diamines in these systems. Recently, we reported the viscometric and volumetric properties of the aqueous systems of ethylenediamine (ED), trimethylenediamine (TMD) and N,N-dimethyltrimethylenediamine (DMTMD) [16–18]. We observed large volume contraction and a large increase of viscosity in the water-rich region for these systems. The thermodynamic parameters are also thought to be effected more in the water-rich region and therefore we restricted the compositions of the systems within this region (0–0.45 mole fraction of diamines). A large amount of data has been collected at closely spaced compositions, so that the variation of these properties as a function of solute concentration could be observed more precisely. Recent publications by Batalin et al. [19] on adiabatic compressibility, Kapadi et al. [20] on the temperature dependence of excess molar volumes, Ivanova *et al.* [21] on the density and viscosity, and Sasaki *et al.* [22] on the ultrasonic velocity of the ethylenediamine and water system are worth mentioning in relation to our work.

2. Experimental

The diamines under investigation were procured from the manufacturers with quoted purities: ethylenediamine (Beijing Chemical Works, 99%), trimethylenediamine (Merck-Schuchardt, 98%) and N,N-dimethyltrimethylenediamine (Merck-Schuchardt, 98%). As measures of purity check, the densities and viscosities of pure liquids were compared with the available literature values [20,23,24]. Our measured values of densities and viscosities of pure liquids have been found to be very satisfactory with literature (Table 1). These were used without further purification except that each of the diamines was kept over molecular sieves (4A) for at least 2 weeks prior to its use. Thrice distilled water was used in the preparation of all the diamine solutions. An Ostwald U-tube viscometer of the British Standard Institution with sufficiently long efflux time was used, so that no kinetic energy

Table 1. Densities, $\rho \times 10^{-3}$ (kg m⁻³), and viscosities, $\eta \times 10^{4}$ (kg m⁻¹ s⁻¹), of pure liquids at different temperatures.

Compounds			Temperature (K)								
	Property	293.15	298.15	303.15	308.15	313.15	318.15	323.15			
ED	ρ	0.8997 0.8997 ^a $0.8995^{\rm b}$ 0.8994°	0.8952	0.8908 $0.890325^{\rm a}$	0.8861 0.885616^a	0.8814 $0.880896^{\rm a}$	0.8767 $0.876153^{\rm a}$	0.8716			
	η	16.03	14.35	12.99 $12.90^{\rm a}$	11.91 $11.67^{\rm a}$	10.80 $10.60^{\rm a}$	9.86 9.67 ^a	9.04			
TMD	ρ		15.4° 0.8846 0.884^{b}	0.8801	0.8756	0.8711	0.8667	0.8622			
DMTMD	η ρ η	0.8210 11.52	18.00 0.8170 10.49	15.94 0.8123 9.41	14.23 0.8080 8.62	12.97 0.8035 7.93	11.81 0.7990 7.31	10.70 0.7946 6.78			

Note: ^a[20], ^b[23], ^c[24].

correction was necessary in viscosity measurement. The density was measured by a 25 mL specific gravity bottle. An analytical balance of accuracy ± 0.0001 g was used in density measurement. The solutions were prepared by mixing known masses of the components determined by the same balance. Mole fractions were accurate up to the fourth place of decimal. For every measurement, a thermostatic water bath controlled to ± 0.05 K was used. The density bottle was calibrated with deionised and doubly distilled water at 303.15, 308.15, 313.15, 318.15 and 323.15 K. The densities (ρ) and viscosities (η) of the systems, water $(W) + ED$, $W + TMD$ and $W + DMTMD$, over the composition range, $0 \le X_2 \le 0.45$, (where X_2 represents mole fraction of diamines) and at temperatures ranging from 303.15 to 323.15 K were reported in our previous studies [16,17,25]. However, the density and viscosity data used to calculate the thermodynamic properties are listed in Table 2. The average uncertainty in the measured viscosity and density was found to be no more than 5.5×10^{-7} kg m⁻¹ s⁻¹ and 1.4×10^{-1} kg m⁻³, respectively.

Eyring equation of the following form was used to calculate the enthalpies (ΔH^{\ddagger}) and entropies (ΔS^{\ddagger}) of activation for the viscous flow:

$$
\ln(\eta V_m/hN) = \Delta H^{\frac{1}{4}}/RT - \Delta S^{\frac{1}{4}}/R,\tag{1}
$$

where the terms have their usual significances. From the slopes and intercepts of the above equation, obtained by the least squares method, ΔH^{\ddagger} and ΔS^{\ddagger} are calculated.

The ΔG^{\ddagger} values are obtained by using the simple thermodynamic relation,

$$
\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}.
$$
 (2)

The thermodynamic activation parameters for the viscous flow were represented by a common polynomial equation of the form,

$$
Y = \sum_{i=0}^{n} A_i X_2^i,
$$
 (3)

where A_i is the *i*-th coefficient, Y stands for ΔG^{\ddagger} , ΔH^{\ddagger} and ΔS^{\ddagger} and X_2 for the mole fraction of diamines.

The excess thermodynamic properties (Y^E) i.e. $\Delta G^{\ddagger E}$, $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ have been calculated by the following equation,

$$
Y^{E} = Y - (X_1 Y_1 + X_2 Y_2), \tag{4}
$$

where the subscripts 1 and 2 represent the pure components of the mixture i.e. water and diamine, respectively.

Each of the experimentally obtained excess properties were fitted to a Redlich–Kister polynomial equation of the type,

$$
Y^{E} = X_{1}X_{2} \sum_{i=0}^{n} A_{i}(1 - 2X_{1})^{i}.
$$
 (5)

3. Results and discussion

Enthalpies (ΔH^{\ddagger}), excess enthalpies ($\Delta H^{\ddagger E}$), entropies (ΔS^{\ddagger}) and excess entropies ($\Delta S^{\ddagger E}$) for all the systems are listed in Table 3. The $\Delta H^{\frac{1}{3}}$ and $\Delta S^{\frac{3}{4}}$ values have been expressed

Note: ^aFrom [16], [17] and [25].

Table 3. Enthalpies, ΔH^{\ddagger} (kJ mol⁻¹), excess enthalpies, $\Delta H^{\ddagger E}$ (kJ mol⁻¹), entropies, ΔS^{\ddagger} $(J \text{ mol}^{-1} K^{-1})$, and excess entropies, ΔS^{E} $(J \text{ mol}^{-1} K^{-1})$, of activation for viscous flow of the systems, W + ED, W + TMD and W + DMTMD.

X_2	ΔH^\ddagger	$\Delta H^{\ddagger E}$	ΔS^{\ddagger}	$\Delta S^{\ddagger E}$	X_2	ΔH^{\ddagger}	$\Delta H^{\ddagger E}$	ΔS^{\ddagger}	$\Delta S^{\ddagger E}$
	$W(X_1) + ED(X_2)$						$W(X_1) + TMD(X_2)$		
0.0000	15.02	0.00	19.72	0.00	0.0000	15.02	0.00	19.72	0.00
0.0500	18.03	3.06	24.24	5.45	0.0518	19.33	4.31	26.69	7.94
0.0999	21.44	6.53	30.40	12.55	0.1000	23.66	8.64	34.98	17.13
0.1500	24.80	9.95	36.92	20.01	0.1498	27.99	12.97	44.25	27.32
0.1998	28.30	13.50	44.64	28.66	0.2004	30.63	15.61	49.40	33.42
0.2488	30.73	15.99	49.95	34.89	0.2498	31.74	16.73	51.00	35.95
0.2749	31.45	16.74	51.33	36.76	0.2734	31.72	16.71	50.35	35.74
0.2997	31.96	17.28	52.38	38.27	0.2984	31.60	16.58	49.53	35.39
0.3246	32.04	17.38	52.21	38.57	0.3248	31.12	16.11	47.78	34.13
0.3488	31.88	17.26	51.52	38.34	0.3502	30.66	15.65	46.21	33.04
0.3739	31.46	16.86	50.13	37.42	0.3766	29.86	14.85	43.78	31.10
0.3944	30.77	16.20	48.06	35.74	0.4041	29.07	14.04	41.32	29.15
0.4542	28.96	14.46	42.76	31.55	0.4467	27.68	12.67	37.20	25.82
1.0000	13.87	0.00	0.96	0.00	1.0000	14.98	0.00	1.02	0.00
	$W(X_1) + DMTMD(X_2)$								
0.0000	15.02	0.000	19.72	0.000	0.2744	32.46	18.13	50.78	38.17
0.0488	22.93	8.036	34.94	16.48	0.2998	31.81	17.55	48.73	36.78
0.0999	29.42	14.65	48.57	31.43	0.3238	30.99	16.79	46.23	34.90
0.1470	32.10	17.45	53.16	37.24	0.3744	29.02	14.95	40.45	30.43
0.1743	32.92	18.34	54.30	39.10	0.3988	28.17	14.16	38.07	28.68
0.1999	33.28	18.76	54.49	40.10	0.4365	26.59	12.68	33.56	25.15
0.2247	33.20	18.75	53.64	39.74	1.0000	12.46	0.00	-6.19	0.00
0.2497	33.00	18.62	52.66	39.41					

Table 4. Coefficients, A_i , of Equation (3) expressing enthalpy, $\triangle H^{\ddagger}$ (kJ mol⁻¹), and entropy, $\triangle S^{\ddagger}$ $(\text{J} \text{ mol}^{-1} \text{ K}^{-1})$, of activation for viscous flow and the square of the regression coefficients, r^2 , for viscous flow of the systems, $W + ED$, $W + TMD$ and $W + DMTMD$.

Systems	Properties A_0		A_1	A_2	A_3	A_4	A_{\leq}	A ₆	r^2
$W + ED$	$\wedge H^{\ddagger}$					15.022 $61.537 - 86.812$ $1835.4 - 9096.1$ 14831		-7706.3 0.9999	
	ΔS^{\ddagger}					19.711 92.590 -233.68 5859.3 -27408 43669		-22494 0.9997	
$W + TMD$	ΔH^{\ddagger}	15.038				64.431 450.47 -2330.2 761.08	8600.3	-10270 0.9998	
	ΔS^\ddag						19.761 70.503 1460.7 -6213.9 -301.54 29287	-32797 0.9995	
$W + DMTMD$	ΔH^{\ddagger}						15.008 168.87 191.63 -7207.4 31807 -59554	41897 0.9996	
	ΔS^{\ddagger}					19.667 296.88 1381.9 -23335 98130	-182150	128063 0.9991	

satisfactorily by Equation (3), the coefficients of which are shown in Table 4 together with the values of r^2 . The plots of ΔH^{\ddagger} against the mole fraction of diamines are shown in Figure 1. The plots of ΔS^{\ddagger} versus X_2 are not shown here, since they are found to follow a similar trend. All the systems show rapid increase in ΔH^{\ddagger} values, pass through

Figure 1. Comparison of enthalpy (ΔH^{\ddagger}) curves of the systems, $W + ED$ (\bullet), $W + TMD$ (\blacktriangle) and $W + DMTMD$ (\blacklozenge), against mole fraction of diamines (X₂).

Table 5. Coefficients, A_i , of Redlich–Kister equation, Equation (5), expressing excess enthalpy, ΔH^{E} (kJ mol⁻¹), and excess entropy, ΔS^{E} (J mol⁻¹ K⁻¹), of activation for viscous flow and standard deviation, σ , of the systems, W + ED, W + TMD and W + DMTMD.

Systems	Properties	A ₀	A_1	A ₂	A_3	σ
$W + ED$	$\Delta H^{\ddagger E}$	48.412	-104.76	-14.959	98.070	0.2017
	$\Delta S^{\ddagger E}$	101.64	-275.12	-106.87	223.97	0.5915
$W + TMD$	$\Delta H^{\ddagger E}$	48.338	-2.1396	301.37	283.43	0.1334
	$\Delta S^{\ddagger E}$	100.00	24.114	807.89	784.58	0.4090
$W + DMTMD$	$\wedge H^{\ddagger E}$	44.413	-38.897	162.88	40.972	0.1993
	$\Delta S^{\ddagger E}$	88.640	-60.053	460.99	185.23	0.6083

a maxima and then gradually decrease as the concentration of solute increases. $W + ED$, W + TMD and W + DMTMD systems exhibit distinct maxima near $X_2 = 0.325$, 0.25 and 0.2, respectively, in their ΔH^{\ddagger} versus X_2 as well as ΔS^{\ddagger} versus X_2 curves. The $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ values are also fitted to the Redlich–Kister polynomial Equation (5) and the coefficients of the equation and the standard deviations are shown in Table 5. Figures 2 and 3 are the comparative diagrams of $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ for aqueous diamines. The excess functions $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ for W + ED, W + TMD and W + DMTMD systems

Figure 2. Comparison of excess enthalpy $(\Delta H^{\ddagger E})$ curves of the systems, $W + ED$ (\bullet), $W + TMD$ (\blacktriangle) and W + DMTMD (\blacklozenge), against mole fraction of diamines (X₂).

follow similar trend as ΔH^{\ddagger} and ΔS^{\ddagger} . The excess thermodynamic parameters for the systems are always found to be positive; indicating that the species formed in the activated state are structurally more disordered than anticipated from ideal condition and use large amounts of energy for their passage to the activated state. The ΔH^{E} and ΔS^{E} versus \tilde{X}_2 curves for $W + ED$, $W + TMD$ and $W + DMTMD$ are characterised by maxima near $X_2 = 0.325$, 0.25 and 0.2 respectively. The order of increment of both $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ are as follows: $W + DMTMD > W + ED > W + TMD$.

Table 6 lists the ΔG^{\ddagger} and $\Delta G^{\ddagger E}$ for all the systems at different temperatures. The ΔG^{\ddagger} values have been expressed by Equation (3). The coefficients of this equation are listed in Table 7 together with the r^2 values. In all cases studied, r^2 displays a value of one, indicating an excellent fitting of the data by the polynomial Equation (3). Figure 4 shows the plot of ΔG^{\ddagger} values of the water (W) + ethylenediamine (ED) against the mole fraction of ED in between 303.15 and 323.15 K. The excess values are fitted to the Redlich–Kister polynomial Equation (5) and the coefficients of the equation and the standard deviations are shown in Table 8. Figure 5 represents the variation of $\Delta G^{\ddagger E}$ of the system, W + ED, against the mole fraction of ED at temperatures 303.15–323.15 K. Since the curves of ΔG^{\ddagger} and $\Delta G^{\ddagger E}$ versus X_2 for W + TMD and W + DMTMD are almost similar to that of $W + ED$, they are not shown graphically. Figures 6 and 7 represent the comparative

Figure 3. Comparison of excess entropy (ΔS^{\ddagger}) curves of the systems, $W + ED$ (\bullet), $W + TMD$ (\blacktriangle) and $W + DMTMD$ (\blacklozenge), against mole fraction of diamines (X₂).

diagrams of ΔG^{\ddagger} and $\Delta G^{\ddagger E}$ for W+ diamines at 303.15 K respectively. From the Figures (4–7), the following characteristic features of the free energy of activation for viscous flow of the three systems are obtained:

- (a) For all systems, ΔG^{\ddagger} values increases rapidly in the lower concentration of diamines, followed by a maxima and then starts to decline as the concentration of diamine increases. However, in each system, values of ΔG^{\ddagger} are found to decrease with the increase in temperature (Figure 4).
- (b) Variation of $\Delta G^{#E}$ with composition for all the systems under investigation are more or less similar in nature, all being associated with maxima and the curves are skewed towards the highly aqueous region (Figure 5).
- (c) The variation of ΔG^{\ddagger} and $\Delta G^{\ddagger E}$ with temperature is quite significant, particularly in the region at or around the maximum. However, the positions of maxima remain unchanged with the change in temperature (Figures 4 and 5).
- (d) The compositions corresponding to maximum $\Delta G^{\dagger E}$ for W + EDA, W + TMDA and W + DMTMDA systems are found to be near $X_2 = 0.325$, 0.275 and 0.225, respectively (Figure 7). The $\Delta G^{\ddagger E}$ values are found to be positive and large in magnitude, which indicate that the solutions are highly non-ideal, and the species formed in the solutions have to surmount a large additional energy barrier in order

Table 6. Free energy of activation, ΔG^* (kJ mol⁻¹), and excess free energy of activation, ΔG^{*E} $(kJ \text{ mol}^{-1})$, for viscous flow of the systems, $W + ED$, $W + TMD$ and $W + DMTMD$.

T/K		303.15		308.15		313.15	318.15		323.15	
X_2	ΔG^\ddag	$\Delta G^{\ddagger E}$	ΔG^{\ddagger}	$\Delta G^{\ddagger E}$	ΔG^{\ddagger}	$\Delta G^{\ddagger E}$	ΔG^\ddag	$\Delta G^{\ddagger E}$	ΔG^{\ddagger}	$\Delta G^{\ddagger E}$
	$W(X_1) + ED(X_2)$									
0.0000	9.04	0.00	8.94	0.00	8.85	0.00	8.751	0.00	8.653	0.00
0.0500	10.68	1.40	10.56	1.38	10.44	1.35	10.31	1.32	10.19	1.30
0.0999	12.22	2.72	12.07	2.66	11.92	2.60	11.77	2.54	11.62	2.47
0.1500	13.61	3.88	13.43	3.78	13.24	3.68	13.06	3.58	12.87	3.48
0.1998	14.76	4.81	14.54	4.67	14.32	4.52	14.09	4.38	13.87	4.24
0.2488	15.59	5.41	15.34	5.23	15.09	5.06	14.84	4.89	14.59	4.71
0.2749	15.89	5.60	15.63	5.41	15.38	5.23	15.12	5.04	14.86	4.86
0.2997	16.09	5.68	15.82	5.49	15.56	5.29	15.30	5.10	15.04	4.91
0.3246	16.21	5.69	15.95	5.49	15.69	5.30	15.42	5.11	15.16	4.92
0.3488	16.26	5.63	16.01	5.44	15.75	5.25	15.49	5.05	15.23	4.87
0.3739	16.26	5.51	16.01	5.33	15.76	5.14	15.50	4.95	15.25	4.76
0.3944	16.20	5.36	15.96	5.18	15.72	5.00	15.48	4.83	15.24	4.65
0.4542	16.00	4.89	15.78	4.73	15.57	4.57	15.36	4.42	15.14	4.26
1.0000	13.58	0.00	13.57	0.00	13.57	0.00	13.57	0.00	13.57	0.00
	$W(X_1) + TMD(X_2)$									
0.0518	11.24	1.90	11.11	1.86	10.97	1.82	10.84	1.78	10.71	1.74
0.1000	13.06	3.45	12.88	3.36	12.71	3.28	12.53	3.19	12.36	3.10
0.1498	14.57	4.68	14.35	4.54	14.13	4.41	13.91	4.27	13.69	4.13
0.2004	15.65	5.48	15.41	5.31	15.16	5.14	14.91	4.98	14.67	4.81
0.2498	16.28	5.83	16.03	5.65	15.77	5.47	15.52	5.29	15.26	5.11
0.2734	16.46	5.87	16.21	5.69	15.96	5.52	15.71	5.34	15.45	5.16
0.2984	16.58	5.85	16.33	5.68	16.09	5.50	15.84	5.32	15.59	5.15
0.3248	16.64	5.76	16.40	5.59	16.16	5.42	15.92	5.25	15.68	5.08
0.3502	16.65	5.63	16.42	5.47	16.19	5.30	15.96	5.14	15.73	4.97
0.3766	16.59	5.42	16.37	5.27	16.15	5.11	15.93	4.96	15.71	4.80
0.4041	16.54	5.22	16.34	5.07	16.13	4.93	15.92	4.78	15.72	4.64
0.4467	16.40	4.84	16.21	4.71	16.03	4.58	15.84	4.45	15.66	4.32
1.0000	14.67	$0.00\,$	14.67	0.00	14.66	0.00	14.66	0.00	14.65	0.00
	W (X_1) + DMTMD (X_2)									
0.0488 0.0999	12.34 14.70	3.03 5.12	12.16	2.95 4.96	11.99	2.87 4.80	11.82	2.79 4.65	11.64	2.70
0.1470	15.99	6.16	14.45 15.72	5.98	14.21 15.46	5.79	13.97 15.19	5.60	13.72 14.92	4.49 5.42
0.1743	16.46	6.49	16.18	6.29	15.91	6.09	15.64	5.90	15.37	5.70
0.1999	16.76	6.65	16.49	6.45	16.21	6.25	15.94	6.05	15.67	5.85
0.2247	16.94	6.70	16.67	6.50	16.40	6.30	16.13	6.10	15.86	5.90
0.2497	17.04	6.67	16.78	6.47	16.51	6.27	16.25	6.08	15.99	5.88
0.2744	17.06	6.56	16.81	6.37	16.55	6.18	16.30	5.99	16.05	5.80
0.2998	17.03	6.40	16.79	6.21	16.55	6.03	16.30	5.85	16.06	5.66
0.3238	16.97	6.21	16.74	6.04	16.51	5.86	16.28	5.69	16.05	5.51
0.3744	16.76	5.72	16.55	5.57	16.35	5.42	16.15	5.27	15.95	5.12
0.3988	16.63	5.47	16.44	5.32	16.25	5.18	16.06	5.04	15.87	4.89
0.4365	16.41	5.05	16.24	4.92	16.07	4.80	15.91	4.67	15.74	4.55
1.0000	14.34	0.00	14.37	0.00	14.40	0.00	14.43	0.00	14.47	0.00

Table 7. Coefficients, A_i , of Equation (3) expressing free energy of activation for viscous flow, ΔG^* $(kJ mol⁻¹)$, and the square of the regression coefficient, $r²$, for viscous flow of the systems, $W + ED$, $W + TMD$ and $W + DMTMD$.

Systems	Temperature (K)	A ₀	A ₁	A ₂	A_3	A_4	A_5	A ₆	r^2
$W + ED$	303.15		9.0470 33.474	-16.161	61.172	-795.85	1609.9	-899.40	1.0000
	308.15		8.9484 32.999	-14.697	29.126	-647.45	1370.1	-771.83	1.0000
	313.15		8.8499 32.536	-13.508	-0.3937	-509.34	1149.4	-657.41	1.0000
	318.15		8.7513 32.075	-12.354	-29.664	-372.23		$930.80 - 544.75$	1.0000
	323.15		8.6527 31.613	-11.211	-58.724	-236.15		$714.17 - 433.38$	1.0000
$W + TMD$	303.15		9.0475 42.880	12.310	-489.41	1032.6	-628.22	-71.857 1.0000	
	308.15		8.9487 42.527		$5.0585 - 459.11$	1038.1	-783.54	99.258	1.0000
	313.15		8.8499 42.172	-2.230	-427.94	1038.6	-927.28	260.88	1.0000
	318.15		8.7510 41.821	-9.520	-397.13	1041.5	-1076.6	427.06	1.0000
	323.15		8.6522 41.468	-16.796	-366.32	1044.2	-1225.8	593.41	1.0000
$W + DMTMD$	303.15			9.0458 78.993 -229.99	-115.83	2014.7	-4293.7	3071.5	1.0000
	308.15			8.9476 77.490 -236.52	-1.4179	1528.7	-3384.6	2427.8	1.0000
	313.15			8.8493 75.971 -242.47	106.48	1074.1	-2542.3	1836.6	1.0000
	318.15			8.7509 74.481 -249.45	226.22	226.22	-1576.0	1147.8	1.0000
	323.15			8.6526 72.975 -255.86	339.57	80.467	-675.62	510.45	1.0000

Figure 4. Variation of free energy (ΔG^{\ddagger}) of the system, water + ED, against mole fraction of ED (X_2) at 303.15 K (\blacklozenge), 308.15 K (\circ), 313.15 K (\blacktriangle), 318.15 K (\diamond) and 323.15 K (\blacksquare).

Table 8. Coefficients, A_i , of Redlich–Kister equation, Equation (5), expressing excess free energy of activation, $\triangle G^{*E}$ (kJ mol⁻¹), for viscous flow and SD, σ , of the systems, W + ED, W + TMD and $W + DMTMD$.

Systems	Temperature (K)	A ₀	A ₁	A ₂	A_3	σ
$W + ED$	303.15	17.599	-21.347	17.474	30.203	0.0234
	308.15	17.090	-19.983	17.966	29.047	0.0205
	313.15	16.582	-18.605	18.513	27.938	0.0178
	318.15	16.093	-16.990	19.649	27.232	0.0154
	323.15	15.565	-15.855	19.576	25.692	0.0126
$W + TMD$	303.15	18.032	-9.6419	55.689	44.936	0.0146
	308.15	17.532	-9.7590	51.657	41.017	0.0131
	313.15	17.032	-9.8778	47.623	37.099	0.0117
	318.15	16.532	-10.001	43.575	33.169	0.0105
	323.15	16.032	-10.122	39.539	29.250	0.0097
$W + DMTMD$	303.15	17.658	-19.478	26.485	-12.707	0.0151
	308.15	17.216	-19.166	24.218	-13.604	0.0122
	313.15	16.769	-18.902	21.818	-14.598	0.0095
	318.15	16.333	-18.531	19.707	-15.383	0.0069
	323.15	15.892	-18.213	17.450	-16.274	0.0051

Figure 5. Variation of excess free energy (ΔG^{*E}) of the system, W + ED, against mole fraction of ED (X_2) at 303.15 K (\blacklozenge), 308.15 K (\circ), 313.15 K (\blacktriangle), 318.15 K (\diamond) and 323.15 K (\blacksquare).

Figure 6. Comparison of free energy (ΔG^{\ddagger}) curves of the systems, W + ED (\bullet), W + TMD (\blacktriangle) and $W + DMTMD$ (\blacklozenge), against mole fraction of diamines (X₂) at 303.15 K.

to flow. This implies that the species experience enhanced resistance to flow. The order of increment of $\Delta G^{\ddagger E}$ in the water-rich region is as follows: $W + DMTMD > W + TMD > W + ED$.

Among the solutes chosen in the current study, the simplest one is ethylenediamine, in which two $-CH_2-NH_2$ groups are joined together. In trimethylenediamine, two –CH₂–NH₂ groups are attached to a –CH₂– group on either sides and in N , N -dimethyltrimethylenediamine, two hydrogen atoms of an $-NH₂$ group are replaced by methyl groups. All three pure compounds are polar by virtue of the presence of an unshared electron pair on nitrogen atoms. Therefore, hydrogen bonding is thought to be formed by the polar group of the diamines and water due to the hydrophilic effect. However, since the electronegativity of nitrogen is low, the hydrophilic effect should also be low. Therefore, the large positive $\Delta G^{\ddagger E}$ cannot be explained by hydrophilic effect only and it is possible that hydrophobic hydration is playing a role here. According to hydrophobic hydration, in a very dilute solution, water molecules form a long-range structural aggregate around the hydrocarbon moieties; with continued addition of diamines; such aggregates increase causing a rapid rise of $\Delta G^{\ddagger E}$. With a further increase in solute concentration, a composition is reached when solute molecules cannot find enough water molecules to be surrounded by and from this point on, the destruction

Figure 7. Comparison of excess free energy ($\Delta G^{\ddagger E}$) curves of the systems, W + ED (\bullet), W + TMD (\blacktriangle) and W + DMTMD (\blacklozenge), against mole fraction of diamines (X₂) at 303.15 K.

of the aggregates begins. The maxima are therefore the result of a balance between the formation and decay of the aggregates formed by water molecules. Again, the hydrophobic effect increases with the increase of hydrocarbon moieties of diamines, while the hydrophilic effect, by which diamine–water association is formed through H-bonding, decreases. Andini et al. [19] showed that hydrophobic hydration varies according to hydrocarbon groups such as, $CH_3 > CH_2 > CH$. Hence by considering hydrophobic hydration, Andini's principle and the structural features of the diamines, it is possible to predict that the free energy and their maxima should vary in the following order: $W + DMTMD > W + TMD > W + ED$, which is in complete agreement with the present observations. The effect of temperature on ΔG^{\ddagger} and ΔG^{\ddagger} particularly in the region at or around the maxima is significant (Figure 4 and 5). This may be due to the structures formed by hydrophobic hydration that are considered to be much more labile and thermally less stable than the normal water structure [27,28]. For the same reason, formation of species with increased disordered structures is possible in the process of activation and the species might require a large amount of energy for their passage in the activated state. This may be why large positive $\Delta H^{\ddagger E}$ and $\Delta S^{\ddagger E}$ are observed in our investigation. A portion of large $\Delta S^{\dot{\xi}E}$ may also come from H-bonding between water and diamine due to the hydrophilic effect that is disrupted during the activation process.

As the concentration of solute increases, the free energy of the systems constantly declines. This may be due to the destruction of the aggregates formed by hydrophobic hydration. At increasingly higher concentration of diamines, it is thought that a new centrosymmetric species is formed that observe less resistance to flow and hence less energy of activation is required [29].

4. Conclusion

In the present article, thermodynamic activation parameters for viscous flow of very dilute aqueous ethylenediamine, trimethylenediamine and N,N-dimethyltrimethylenediamine have been studied between 303.15 and 323.15 K. These properties and their excess values have been found to increase rapidly in the very low concentration of diamines and then gradually decline as the concentration of diamine increases. It is thought that in very low composition of solutes, water molecules form a long-range structural aggregate around the hydrocarbon moieties of diamines, which cause rapid increase of the thermodynamic properties of the systems. In the higher concentration of diamines, the aggregates start to break down and the lowering of thermodynamic properties was observed. The maximum value for the $\Delta G^{\dagger E}$ is found to follow the order $W + DMTMD > W + TMD > W + ED$. This illustrates the increase of hydrophobic effect with the increase of hydrocarbon moieties of the systems.

Acknowledgement

The authors gratefully acknowledge the financial support of the Ministry of Science, Information and Communication Technology, Govt. of the People's Republic of Bangladesh, as a special allocation for the project 'Physical Properties and Molecular Interactions in Liquid Systems'.

References

- [1] C.A. Koh, R.P. Wisbey, X. Wu, R.E. Westacott, and A.K. Soper, J. Chem. Phys. 113, 6390 (2000).
- [2] L.F. Scatena, M.G. Brown, and G.L. Richmond, Science 292, 908 (2001).
- [3] T.R. Jensen, M.O. Jensen, N. Reitzel, K. Balashev, G.H. Peters, K. Kjaer, and T. Bjornholm, Phys. Rev. Lett. 90, 086101 (2003).
- [4] D.T. Bowron, A. Filipponi, M.A. Roberts, and J.L. Finney, Phys. Rev. Lett. 81, 4164 (1998).
- [5] R. Steitz, T. Gutberlet, T. Hauss, B. Klosgen, R. Krastev, S. Schemmel, A.C. Simonsen, and G.H. Findenegg, Langmuir. 19 (6), 2409 (2003).
- [6] J.C. Grossman, E. Schwegler, and G. Galli, J. Phys. Chem. B 108, 15865 (2004).
- [7] D.C. Rapaport and H.A. Scheraga, J. Phys. Chem. 86, 873 (1982).
- [8] G. Bolis and E. Clementi, Chem. Phys. Lett. 82, 147 (1981).
- [9] C. Pangali, M. Rao, and B.J. Berne, J. Chem. Phys. 71, 2982 (1979).
- [10] S. Swaminathan, S.W. Harrison, and D.L. Beveridge, J. Am. Chem. Soc. 100, 5705 (1978).
- [11] C.Y. Lee, J.A. McCammon, and P.J. Rossky, J. Chem. Phys. 80, 4448 (1984).
- [12] J.C. Shelley, G.N. Patey, D.R. Berard, and G.M. Torrie, J. Chem. Phys. 107, 2122 (1997).
- [13] J.C. Shelley, Mol. Phys. **88**, 385 (1996).
- [14] M. Kinoshita and M. Harada, Mol. Phys. **81**, 1473 (1994).
- [15] M. Kinoshita., Journal of Mol. Liq. 119, 47 (2005).
- [16] M.A. Saleh, M.S. Ahmed, and M.S. Islam, Phys. Chem. Liq. 40, 477 (2002).
- [17] M.A. Saleh, S. Akhtar, and M.S. Ahmed, J. Mol. Liq. 116, 147 (2005).
- [18] M.A. Saleh, S. Akhtar, and M.S. Ahmed, Phys. Chem. Liq. 42, 103 (2004).
- [19] G.I. Batalin and G.I. Chalyuk, Ukrainskii Khimicheskii Zhurnal (Russian Edition) 32 (11), 1254 (1966).
- [20] U.R. Kapadi, D.G. Hundiwale, N.B. Patil, and M.K. Lande, Fluid Phase Equilib. 205, 267 (2003).
- [21] E.F. Ivanova and S.M. Kiiko, Vestn. Khar'k Univ. 378, 92 (1993).
- [22] K. Sasaki and K. Arakawa, Bull. Chem. Soc. Jpn. 45, 3287 (1972).
- [23] D.R. Lide, CRC Handbook of Chemistry and Physics, 58th ed. (CRC Press, Boca Raton, FL, 1977–1978).
- [24] L. Scheflan and M.B. Jacobs, *The Handbook of Solvents* (D. Van Nostrand Company, Inc, New York, 1953), p. 364.
- [25] S.M. Islam, M.Sc. Dissertation, University of Chittagong, Chittagong (2001).
- [26] S. Andini, G. Castronuovo, V. Elia, and L. Fasano, J. Chem. Soc. Faraday Trans. 86, 3567 (1990).
- [27] A.K. Covington and P. Jones, *Hydrogen Bonded Solvent Systems* (Taylor & Francis Ltd, London, 1968).
- [28] F. Franks, Water (The Royal Society of Chemistry, London, 1983).
- [29] F. Franks and D.I.G. Ives, Quart. Rev. 20, 1 (1966).